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ABSTRACT 

A climatology of the Cape Canaveral, Florida sea breeze has been established using 

data from the warm seasons of 1995 and 1996. Data from the Cape Canaveral mesoscale 

tower network were used to locate the sea breeze, determine its inland penetration, and 

assess its time of passage. Visible satellite imagery centered over Melbourne, Florida also 

were used for this purpose. Radiosonde data were used to determine the large-scale flow 

over the region. A total of 357 days was analyzed. These days were classified as sea-breeze 

days, non-sea-breeze days, or undetermined. Undetermined days (40) were removed from 

the final sample, leaving a total of 317 days. River breezes and other local circulations were 

analyzed and related to the sea breeze, and the presence of convection was related to sea- 

breeze occurrence and large-scale flow. 

An onshore sea breeze was observed on 194 of 317 days (61%) during the warm 

season. It was likely to form on days with large-scale flow from any direction but northeast. 

The average time of sea-breeze passage at tower 112 was determined to be 1528 UTC. The 

sea breeze penetrated the entire Cape Canaveral tower network (30 km) on 81% of the 194 

sea-breeze days investigated. Inland penetration was reduced, and passage time was 

delayed, for offshore flow greater than 4ms"'. The river breezes that were observed on 116 

days tended to occur when the large-scale flow was weak. A trailing convergence line was 

observed behind the sea-breeze front on 30 days. This line formed on days with weak large- 

19970903 069 



scale forcing.   Thunderstorms were observed on 53% of the sea-breeze days, and storms 

were most likely when the large-scale flow was from the southwest. 

Thresholds were established for the onshore and offshore large-scale wind 

components associated with inland sea-breeze occurrence. Observations indicated an 

offshore maximum of 12.9 m s"1 and an onshore maximum of 6.7 m s"1 for the Cape 

Canaveral area. In general, sea breezes occur over the Cape Canaveral area for onshore 

flow no greater than 6ms"1 and offshore flow no greater than 10 ms"1. These values are 

somewhat higher than those derived from previous, numerical studies. Current results 

indicate that some findings from two-dimensional sea-breeze modeling studies are not 

applicable to Cape Canaveral's complex land/sea interface. 
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ABSTRACT 

Head motion is a parameter that scientists at NASA Ames Research Center are inter- 

ested in observing during flight experiments. The purpose of determining head motion is 

to understand the physiological effects of the flight environment upon Rhesus monkeys. 

Previously, the engineers at Ames Research Center used angular rate sensors to develop 

head motion velocity (HMV) systems. Although advantages exist for using angular rate 

sensors to determine head motion, several disadvantages have prompted the engineers 

at Ames Research Center to investigate new methodology for designing HMV systems. 

One method employed to avoid the problems associated with using angular rate sensors 

uses an accelerometer configuration. However, accelerometers are noisy and contain both 

deterministic and stochastic errors. Hence, this thesis explores using the Kaiman filter 

as a covariance analysis tool to minimize the accelerometer errors and develop an animal 

head-motion estimation system. Furthermore, the results of several experiments show 

that an accurate depiction of head motion is obtainable. 
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CHAPTER 1 

INTRODUCTION 

Scientists at NASA Ames Research Center are interested in employing new method- 

ology to process data obtained by the Sensors 2000 biomedical engineering team. These 

engineers are responsible for developing new sensor technology to measure biomedical 

parameters during flight experiments. One parameter that they are interested in mea- 

suring is the head motion of Rhesus monkeys. The purpose of observing head motion is 

to allow the principal investigator (PI) the ability to monitor the physiological effects of 

the flight environment upon the monkey. 

The question may be posed, What sensors measure head-motion? especially because 

countless sensors exist on the market today. No one sensor can completely measure 

head motion; therefore, head motion velocity (HMV) systems are designed for individual 

applications. Previously, the engineers at Ames Research Center were using angular 

rate sensors to measure angular head-motion velocity. An angular rate sensor outputs 

a voltage that is proportional to the degree of rotation that the sensor experiences. 

Although advantages exist for using angular rate sensors to design HMV systems, several 

disadvantages have prompted the Sensors 2000 engineers to employ new methodology to 

design head-motion systems. To alleviate these problems, one strategy for designing an 

HMV system is to use an inertial navigation system (INS) design approach. For example, 

the purpose of an INS system is to determine the position of a vehicle and guide the 

vehicle from one point to another. An INS is a self-contained unit which utilizes precision 

gyroscopes and accelerometers to sense all motion of a vehicle [1]. Similarly, an HMV 

system is also a self-contained unit which is used to process the position and velocity of 

the head of a monkey at any time. Hence, the use of inertial sensors to gather and process 

the head motion of a Rhesus monkey is a reasonable assumption. Furthermore, several 

virtual reality systems use a combination of both angular rate gyros and accelerometers 



within head mounted displays (HMDs) to track the head motion of the system user [2]. 

These HMDs are much too heavy for flight experiments on Rhesus monkeys [2], [3]. 

The specifications for designing a system to compute the head movement of a Rhe- 

sus monkey require special considerations. Because the HMV system will be mounted 

onto a cap, it is impractical to place heavy hardware onto a little monkey's head. The 

head-motion system should be as light as possible; however, the sensor circuitry should 

not compromise the quality of the sensor signals. Another requirement is that the sensor 

should not create any unwanted disturbances to the monkey during experiments. An 

advantage of using the angular rate sensor is that it is extremely small; however, it emits 

a noisy 300 Hz tone that is annoying to the monkey and requires frequent calibration. 

One method employed to avoid the problems associated with using angular rate sen- 

sors is to use an accelerometer configuration. Although the angular rate problems are 

avoided, accelerometers introduce new errors requiring clever signal processing to remove. 

These accelerometer errors are caused by sensor misalignment, bias errors, and scale fac- 

tor errors. Errors normally fall into two categories: deterministic errors and stochastic 

errors [4]. Deterministic errors are characterized by constant coefficients and may be sub- 

tracted out from the system model. An accelerometer bias error falls into this category. 

Stochastic errors are treated statistically based upon the system's mathematical model. 

Accelerometer stochastic errors are caused by noise that may be white or colored, which 

is accounted for in the plant model of the head-motion system. 

This thesis explores designing an HMV system using only accelerometers to process 

head motion. Several advantages exist for using accelerometers to compute head motion 

velocity instead of using angular rate sensors or rate gyros. Among the obvious ones are 

obtaining linear velocity and position. By using these sensors to characterize the head 

motion of a Rhesus monkey, the direction vector of the head movement may be obtained. 

The accelerometers used in this HMV circuit cost approximately $30 per sensor; however, 

some angular rate gyros cost about $2000 per sensor. Clearly, this cost advantage presents 

an additional incentive to only use accelerometers within the HMV circuitry. If the new 

system can process the signal output and minimize the accelerometer errors of the system, 

then the cost advantage is complemented by a reduction in system hardware. Now that 



the motivation for using accelerometers is established, the HMV system design procedure 

consists of designing the system hardware, data acquisition, and postanalysis of the data. 

As stated earlier, the approach for designing a head-motion system uses several INS 

design concepts. Within this methodology is the use of a Kaiman filter to determine the 

system states. The software implements a Kaiman filter to obtain the states of the system 

from the system outputs of the signal circuitry. Although this system post-processes data 

from a data acquisition board, the discrete-time Kaiman filter is intended for real-time 

implementation in a digital computer. Furthermore, developing a Kaiman filter involves 

using covariance propagation as an error analysis tool. The goal of this thesis is to employ 

a Kaiman filer as a covariance analysis tool to maximize the information obtained from 

a head-motion system. 

The organization of the next four chapters of this thesis is as follows. Chapter 2 

develops the notation that is used for the continuous-time and discrete-time models of 

the Kaiman filter. Chapter 3 builds upon the notation developed in Chapter 2 and derives 

the dynamic equations of linear head motion. Also, Chapter 3 develops a Kaiman filter 

for the head-motion estimation system and discusses the following topics: covariance 

matrices, the state transition matrix, observations, and Kaiman weights. Chapter 4 

discusses research methodology used for system design and analysis and is divided into 

three sections: hardware and software design, test procedures, and results. The last 

chapter, Chapter 5, discusses conclusions and recommendations. 



CHAPTER 2 

THE KALMAN FILTER 

In this Chapter, we will develop the notation for equations used to implement the 

Kaiman filter. The purpose of a Kaiman filter is to estimate the state of a system from 

measurements that contain random errors. In essence, the Kaiman filter consists of a 

linearized model of the system dynamics which employs statistical estimates of the system 

error sources. These estimates are then used to compute the time-varying gains of the 

system to process external measurement information [5]. 

2.1    The Continuous-time Kaiman Filter 

We are concerned with estimating the states of a continuous-process head motion 

from accelerometer measurements. Hence, the continuous-time description of a linear, 

time-varying state model vector differential equation can be written as 

x(t)   =   F(i)x(t) + G(t)w(t) (2.1) 

z(t)   =   K{t)x(t) + v(t) (2.2) 

where x(t0) = x0, E[x0] = fix and x(i) G Rn is the state vector, w(i) G Rm is the system 

input vector that consists of white noise, and z(t) G Rr is the system output vector. The 

equation variables are defined as follows: 

x(t)   =   a state vector of dimension nxl representing the error model states 

F(t)   =   annxn matrix describing the system and error model dynamics 

G(t)   =   an n x r matrix which scales the white-noise inputs and sums them 

with the desired blending of the states x(t) 



w(t) = an r x 1 vector of stochastic inputs of a zero-mean white-noise process 

z(i) = an n x 1 vector of the measurement or output vector 

H(i) = an m x n observation matrix relating state x and measurement z 

v(t) = anmxl vector of stochastic observation errors 

The solution of the vector differential Equation (2.1) is given by 

x(i) = $(t, t0)x(t0) + f *(i, r)G(7>(r)dr (2.3) 

where the state-transition matrix $(*, £0) is a solution of the matrix linear differential 

equation 

$(Mo) = i^o)$(Mo) (2-4) 

with the initial conditions 

$(t,t0) = I (2.5) 

where / is the identity matrix, and the state-transition matrix $(£,£o) can De expressed 

as 

$(Mo)   =   [^(si-F)-1] (2.6) 

=   eFit-to) (2.7) 

=   J + FT+^- + --- (2.8) 

where (t-tQ) — Ai = T. Equation (2.2) states that the measurement z(t) is composed of 

a linear combination of the state vector with a noise vector v(t). The observation matrix 

H(t) reflects the linear relationship existing between the state and the measurement. We 

are interested in using noise statistics of the accelerometer to implement the Kaiman 

filter. Assuming that the noise statistics are zero-mean, white, and Gaussian, then the 

following notations: 

E[ }   =   expected value operator 

(j,x(0)   =   meanofx(O) 



S(t)   =   Dirac delta function 

Q(t)   =   the covariance matrix of the state model uncertainties noise strength 

R(i)   =   the covariance matrix of the measurement noise strength 

are used to establish the relations: 

E[x(0)} = ^(0), 

E[w(t)} = E[v(t)] = 0, 

E[w(t)wT(r)} = Q(t)5(t-T), 

E[v(t)vT(r)} = R(t)5(t-r), 

E[v(t)wT(r)} = 0,                                                         (2.9) 

(matrix transpose is denoted by the superscript T). 

Now that the notation for the model is established, we can update the best estimate 

of the state vector x(t) according to a linear combination of the measurements z(t) and 

the current state estimates x(t) to minimize the performance index 

E[x(t) - x(t)]T[x(t) - x(t)] = minimum (2.10) 

where the solution to minimizing this performance index is the Kalman-Bucy filter [5]. 

The equation for the optimal state estimator or observer is 

x(i) = F(t)x{t) + K(t)[z(t) - H(t)x(t)] (2.11) 

The Kaiman gain matrix K(t) is a coefficient matrix obtained by solving a Riccati dif- 

ferential equation for the error-covariance matrix P(t) where 

P(t) = E[x(t) - x(*)][x(i) - x(t)f (2.12) 

In Equation (2.12), the difference between the state x(t) and the measurement x(t) is 

the error in the estimate. 



The covariance equation is a Riccati differential equation (RDE). The covariance 

equation is written as 

P(t) = F(t)P(<) + P{t)FT(t) - P(t)HT(t)R-\t)H(t)P(t) + G(t)Q(t)GT{t)     (2.13) 

where P(t) is a symmetric positive definite matrix which satifies Equation (2.13). 

2.2    The Discrete-time Kaiman Filter 

The HMV data that we receive is continuous; however, we implement the Kaiman 

filter in discrete time [6]. We are interested in processing sampled data from accelerometer 

measurements to determine optimal estimates of the acceleration, velocity, and position 

of Rhesus monkey head motion. This section will establish the discrete-time Kaiman 

filter equations that will be used to process the sensor data. Details of the development 

of these equations may be found in [1], [7], [8]. 

The following equations implement the discrete-time Kaiman filter: 

for k=0,l,2,..., 

x(k + l) = $(k)x(k)+w(k) (2.14) 

z(fc) = H(fc)x(fc)+v(fc) (2.15) 

where both w(k) and v(k) are white Gaussian sequences with zero mean. 

State prediction: 

x(fc + l)   =   $(k)x{k), (2.16) 

x(0|0)   =   x(0) 

Observation prediction: 

z(A; + l) = Hx(Jfc + l|A:) (2.17) 



Innovations: 

v(k + 1) = z(k + 1) - z(k + l\k) (2.18) 

Covariance prediction: 

P(fc + l\k) = $P(A;)$T + GQGTP{0\0) = P(0) (2.19) 

Innovations covariance: 

S(Jfc + l) = HP(fc + l|A;)Hr + R (2.20) 

Kaiman gain: 

K(A; + l)=P(Ä; + l|A;)HrS(Ä; + l)-1 (2.21) 

State update: 

x(k + l|fc + 1) = x{k + l\k)+ K(k + l)v(fc + 1) (2.22) 

Covariance update: 

P(fc + l|fc + 1) = P(k + l\k)- K(k + l)S(fc + 1)KT(A; + 1) (2.23) 

Equations ((2.16)-(2.23)) are used to implement the discrete-time Kaiman filter using 

a computer. The algorithm begins by initially setting the state X0 and covariance P0 

matrices. Once an incoming measurement z(k + l) is available, the discrete-time Kaiman 

filter runs a time-update step. Before each new accelerometer measurement is processed, 

the time-update step is resonsible for computing the new accelerations, velocities and 

positions for the new state matrix X(k + 1) and covariance matrix P(fc + 1). The following 

equations implement the time-update step: 

X-(Jfe + l|A:)   =   $X(&) 

p-(Jfe + l|fc)   =   §P{k)<!>T + Q{k) (2.24) 

where the superscript (~) indicates a partial time update. 



As in the continuous-time Kaiman filter, the prior statistics of wk and vk are consid- 

ered to be zero-mean, white-noise processes. Therefore, 

Ü7[x(0)] =    Ar(0), 

E[w(k)] =   Ev(k) = 0, 

E[w(k)wT(j)} =    Q(k)5kj, 

E[v(k)vT(j)} =   R(k)8kj, 

E[w(k)vT(j)} =   0,Vkj (2.25) 

Both the system noise Q and measurement noise R covariance matrices may be expressed 

as follows: 

Q(*)   = 
1 1 

°n    °2 

i       i 

9 

O. 2n 
(2.26) 

where the cross-correlation system noise terms are denoted by the off-diagonal elements 

and the diagonal elements are the variances of the noise parameters. The measurement 

noise matrix R takes the same form as Q except that the off-diagonal terms are zero. 

£[wfcwj Tl Qk, k = j 

0, k # j 
(2.27) 

The noise-strength matrix Q(k) is given by 

E[w{tk+1)w
T(tk+1)} = Q(tk) = ftk+1 ${tk+l, r)Q(r)^T(tk+ur)dT (2.28) 

•>tk 

Furthermore, the measurement-noise covariance matrix R is defined as 

E[wkw) 
Rfc, k=j 

0, k^j 
(2.29) 



which is used to determine the weight that the Kaiman filter should place on each of the 

measurements. 

10 



CHAPTER 3 

SYSTEM DEVELOPMENT 

3.1    System Modeling 

The Kaiman filter is an optimal linear estimator that minimizes the expected mean- 

square error in the estimated state variables, given an appropriate system model. This 

model requires a description of how the state variables change with time in the absence 

of inputs, and the inaccuracies in both the measurements and the model given that they 

are characterized by white-noise processes. 

Theoretically, a white-noise random process has a power spectral density that is 

uniform over all frequencies; however, this is not realizable because it implies infinite 

average power. Nevertheless, many physical systems in nature have a flat power spectrum 

far higher than the maximum frequency at which a system is responsive [1]. These 

systems are approximately stationary and Gaussian. Specifically, white noise may be 

viewed as a limiting form of exponentially correlated noise when the correlation time 

approaches zero. Experimentation and analysis reveal that using the white-noise concept 

to design this head-motion system is no exception. As we continue to design the HMV 

system, we will model any correlated noise by the addition of states to the sytem. 

We would like to model each of the accelerometer inputs of the head-motion system as 

a Gauss-Markov process. For exponentially correlated noise, the autocorrelation function 

for this zero-mean stationary process is written as 

-in 
Rx(r) = o*xe-M = ale^1 (3.1) 

11 



and the power spectral density of Equation (3.1) is 

S.M = ^ (3.2) 

where ox is the variance of the signal input, u = 2irf is the frequency, and ß=~^- In 

Equation (3.1) the correlation time is denoted by rc. Furthermore, as the accelerometer 

input correlation time rc approaches zero, then 

Rx(r)   =   a2J(r) (3.3) 

Sx(u)   =   2a2/?. (3.4) 

We cannot analytically determine the time correlation rc of the accelerometers with- 

out experimentation. Therefore, we will use these equations to develop a conceptual 

understanding of the continuous-time system dynamics and investigate determining a 

correlation coefficient using linear prediction. 

3.1.1     Continuous-time model 

To process the data obtained from the accelerometers, it is necessary to develop the 

continuous-time description of the system dynamics. In Chapter 2, the continuous-time 

description of a linear, time-varying state model can be written as 

x(t)   =   F(t)x(t) + G(i)w(i) (3.5) 

z(i)   =   H(*)x(*)+v(i) (3.6) 

Although it is not necessary to fully develop the continuous-time Kaiman filter, we are 

concerned with filtering a continuous-time random process that is driven by what we will 

assume is white noise. 

Therefore, we only need to derive the system-dynamics matrix F and state-transition 

matrix <£, which are valid for both the continuous-time and discrete-time models of the 

head-motion system. The system-dynamics matrix F for our system is determined from 

12 



the vector x 

iT 

xxxyyyzzz (3.7) 

Moreover, F can be derived from Equation (3.7) and expressed as 

010000000 

001000000 

000000000 

000010000 

000001000 (3.8) 

000000000 

000000010 

000000001 

000000000 

Now F may be used to determine the state transition matrix. Note that the matrix F 

represents the decoupled dynamics of the head-motion system. 

For slowly varying or time-invariant systems, the matrix $ represents the state- 

transition matrix. The purpose of the state-transition matrix is to transform a given 

state at a time tk to another state at time tk+x. Essentially, this matrix is used to prop- 

agate the state covariance matrix P. This means that this matrix is used to calculate 

the state-vector estimate at the present point in time tk from the previous sample in 

time tk-\. In our accelerometer problem, we are concerned with propagating the sam- 

ple tk to tk+i to adjust the covariance matrix from one sample instant to another. The 

discrete-time state-transition matrix may be obtained by using F to solve the following 

equation 

$(Mo)   =   [C-'isI-F)-1] 

,F(t-t0) =   e 

(FT)2 

I + FT + ^- + 

(3-9) 

(3.10) 

(3.11) 

13 



where the state-transition matrix $(£, to) is used to determine the state of the system 

given the equation 

x(t) = $(t,t0)x{to) + [ ^{t,r)G(r)w{r)d 
Jto 

(3.12) 

which yields the state of the system at any time t. 

The state-transition matrix of the HMV system is computed using Equation (3.11) 

so that 

$k   = 

1 T \rn2 
21 0 0 0 0 0 0 

0 1 T 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 T I ml 
21 0 0 0 

0 0 0 0 1 T 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 T lrp2 
21 

0 0 0 0 0 0 0 1 T 

0 0 0 0 0 0 0 0 1 

(3.13) 

where T denotes the sampling time. The state-transition matrix $ will be used later in 

the development of the discrete-time model of the system. 

Also, notice that the intersection of the first three rows and columns of $ can be used 

to write the linear equations of position and velocity, given acceleration for one channel 

of the system. The decoupled rectilinear equations of motion are 

x&t   =   x0 + Tv0 + -a>AtT2 

VAt v0 + aAtT 

(3.14) 

(3.15) 

where x(t0)=xQ, v(to)=v0, and aAt represents acceleration. Now, Equations (3.14) and 

(3.15) will be used in the next section to develop the discrete-time Kaiman filter for the 

head-motion system. 

14 



3.1.2    Discrete-time model 

As discussed previously, practical implementation of the Kaiman filter is done in 

discrete-time. This is achieved by modeling the dynamics and noise processes of the 

system into the discrete time form 

x(k + l\k)   =   §(k + l\k)x{k) + w(k) 

z(k)   =   H{k)x{k) + v{k) 

(3.16) 

(3.17) 

where Equations (3.16) and (3.17) represent the state model and the measurement. 

Because the continuous-time Equations (3.14) and (3.15) are valid for constant accel- 

eration, the discrete-time model of the system must sample well-above the Nyquist rate to 

achieve constant acceleration between sample points. The notation for the discrete-time, 

one-step-ahead state predictor of the head-motion model is denoted as follows: 

x^k + 1) :   x position 

x2(k + l] :   x velocity 

x3(k + l) :   x acceleration 

Xi(k + 1) :   y position 

x5(k + 1) :   y velocity 

x6(k + I) :   y acceleration 

x7(k + l) :   z position 

xs(k + l) :   z velocity 

Xg(k + 1) :   z acceleration 

Given the one-step-ahead state-predictor notation, let us develop the state-space rep- 

resentation for the discrete-time model of the system using the continuous-time Equations 

(3.14) and (3.15). Here, the discrete-time state equations may be written as 

^(fc + 1)   =   ^(A;)+T:r2(A;) + -T2(aI-<rx) 
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x2(k + l) 

x3{k + l) 

x4(k + l) 

x5(k + l) 

x6(k + l) 

x7(k + l) 

x8(k + l) 

xd(k + l) 

x2(k) +T(ax -ax) 

(ax — ax) 

x4{k) +Tx5{k) + -T2(ay - ay) 

xA(k) +T(ay - Oy) 

(ay - oy) 

x7{k) + Tx8(k) + ^T2(az-az) 

x7{k)+T(az-az 

(az - oz) (3.18) 

which represent the states of the system.  The three accelerometers are configured or- 

thogonally and output ax, ay and az which contain errors ax, oy and oz. 

The Kaiman filter works in a -predict - correct manner, and modeling the error of the 

accelerometer measurement as a white-noise process greatly influences the performance 

of the Kaiman filter. This error will be used to compute the input-noise covariance 

matrix Q. In the state Equations (3.18), the values ax, ay, and az represent the standard 

deviations of the error of the accelerometer measurements in the x, y, and z directions, 

respectively. These input-noise variance statistics are used to minimize the expected 

mean-square error of the estimated state variables. Also, these noise statistics are used 

to obtain the value of wk for Equation (3.16). Furthermore, the matrix representation 

for the system states may be written as 

a;i(A: + 1) 1 T \T2   0   0 0 0    0 0 x\{k) 

x2(k + l) 0 1 TOO 0 0   0 0 x2(k) 

x3{k + l) 0 0 1     0   0 0 0   0 0 x3(k) 

x4(k + 1) 0 0 0     1   T 21 0   0 0 Xi(k) 

xs(k + 1) = 0 0 0     0   1 T 0   0 0 x5(k) 

x6(fc + 1) 0 0 0     0   0 1 0   0 0 x6(k) 

x7(k + l) 0 0 0     0   0 0 1   T 17/2 
21 x7(k) 

x8{k + l) 0 0 0     0   0 0 0    1 T x8(k) 

xd(k + 1) 0 0 0     0   0 0 0   0 1 _ x9(k) 

+ wk      (3.19) 
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where the input-noise statistics wk will be derived in the following section. 

3.2    The Covariance Matrices 

3.2.1    The input-noise covariance 

The covariance matrix Q provides a statistical representation of the uncertainty in the 

current state estimate and the correlation between the individual elements of the states. 

The HMV system noise covariance matrix is a symmetric matrix that is determined from 

the following noise-strength equation 

E[w(tk+1)wT(tk+l)] = Q(tk) = fh+l ${tk+1,T)Q(T)<S>T(tk+ur)dr (3.20) 
Jtk 

which was discussed in Chapter 2. In practice, it is difficult to determine the input- 

noise covariance values analytically. However, the approach that was taken for our HMV 

system was to conduct several controlled experiments and then "tune" the stochastic 

inputs wk of the system by estimating the standard deviations of the accelerometers ax, 

Oy and oz. 

The performance of the Kaiman filter is greatly influenced by modeling the input- 

white-noise processes using the standard deviation of the input system noise to compute 

the covariance matrix Q. Therefore, wk may be expressed as 

Wfc 

|TVX 0 0 

Tax 0 0 

Ox 
0 0 

0 2uy 0 

0 TOy 0 

0 ay 0 

0 0 |TV 

0 0 Taz 

0 0 Oz 

(3.21) 
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which is used to determine the covariance matrix Q. For the head-motion sytem, we 

determine the input noise-covariance matrix from the expression 

Q(k) = E[wkw
T

k] (3.22) 

which takes the following form for the HMV system 

Q = 

\T"al \T'ol \T*ol 0 0 0 0 0 0 

\TZ°l T2al Tol 0 0 0 0 0 0 

\T2°l Tal <% 0 0 0 0 0 0 

0 0 0 ±T4<72 
i^   uy \T*a* 2"*   uy 0 0 0 

0 0 0 2-l                Uy T2a2
y T°2y 0 0 0 

0 0 0 ±T2a2 
2X   uy T°i °2y 0 0 0 

0 0 0 0 0 0 iT4(72 
4±    u z \T*ol \T2a\ 

0 0 0 0 0 0 2          z T2o\ T*2 

0 0 0 0 0 0 ±T2a2 
9 A     U Z Ta2

z °l 

(3.23) 

3.2.2    The measurement-noise covariance 

The observation or measurement-noise covariance matrix R is used to model the 

standard deviation of the measurement as a white-noise process. Again, it is difficult to 

analytically determine the values for this process; however, the method used to set the 

covariances for the HMV system is to "tune" them after calibrating the accelerometers. 

The HMV system measurement covariance matrix R is a diagonal matrix which is defined 

as follows: 

R(fc) = E[vkv
T

k}. (3.24) 

Although the HMV system only has one accelerometer input per channel, we model the 

system as if all of the parameters were measured which allows additional tuning of our 

system. This concept is discussed further in the next section. 
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3.3    The Observation 

The Kaiman filter has previously been described to work in a predict—correct manner; 

however, we are limited to have only one sensor observation or measurement. We will 

illustrate the effect of having only one sensor measurement with an example. 

Suppose we have an airplane that contains an accelerometer which measures its ver- 

tical acceleration. We want to use a Kaiman filter to predict and correct the states of 

the airplane to obtain its vertical velocity and position. Now let us add an altimeter to 

the airplane. This altimeter provides additional sensor information regarding the state of 

the aircraft. The key to this system is that the accelerometer tries to predict the vertical 

velocity and position of the airplane, and the altimeter reading provides a measurement 

comparison for the prediction. The difference between the state prediction and measure- 

ment is the error. This error is multiplied by the Kaiman gain to correct the states and 

update the covariance matrix P which is used to process the next sensor measurement. 

Now, suppose that we have the same airplane; however, the altimeter is broken. This 

means that the Kaiman filter will have an accelerometer reading, but no comparison for 

the state predictions. For each state that the Kaiman filter cannot measure, it takes 

a longer time for the covariances of those states to converge to the steady-state value. 

Moreover, this results in an accumulation of errors that causes the position and velocity 

to drift over time. Therefore, the Innovations step (see Chapter 2) of the Kaiman filter 

will have state predictions that cannot be measured. 

Ideally, we would like a measurement for each state of the plant; however, this is not 

possible. Therefore, we want to trick the Kaiman filter into thinking it is receiving actual 

measurements from every state of the head-motion system. This is done by creating 

what we will call virtual measurements. We will define a virtual measurement as an 

approximation to an actual state measurement for our plant observation by using a 

linear combination of the measurement from another state. This is feasible, because we 

can account for the uncertainty in our guess through adjusting the measurement-noise 

covariance matrix R. Hence, these virtual measurements are used to add flexibility to 

the system and provide "tuning." 
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The Kaiman filter uses all of the past and present measurements to provide an es- 

timate of the states of the system. Regardless of the accuracy of the measurement, 

the HMV system velocity and position estimates are improved by each iteration of the 

discrete-time update process, and the inputs w are a combination of plant dynamics and 

measurements that are used to form the vector z 

z   = pp'pqqqrrr (3.25) 

where 

p : virtual position measurement in the x direction 

p : virtual velocity measurement in the x direction 

p : actual acceleration measurement in the x direction 

q : virtual position measurement in the y direction 

q : virtual velocity measurement in y direction 

q : actual acceleration measurement in the y direction 

r : virtual position measurement in the z direction 

r : virtual velocity measurement in z direction 

r : actual acceleration measurement in the z direction 

Furthermore, the values used for the measurement vector z may be written as 

\T2ax   Tax   ax   \T
2ay   Tay   ay   \T

2az   Taz   az (3.26) 

Now that these modifications to the sytem have been made, the filter weights will be 

discussed. 

3.4    Kaiman Weights 

The Kaiman filter weights or gains K affect the state update and covariance update 

steps of the Kaiman filter.   Moreover, the Kaiman gain is used to correct what we 
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observe according to what we claim should have been observed. So for the HMV system, 

the Kaiman gain K is a weight that corrects the observed acceleration, velocity, and 

position. This gain determines how much we will change the estimate of the state, based 

on the new observation. One interpretation of this is that if the elements of K are small, 

then we have considerable confidence in our model, and if they are large, then we are 

more confident with the observation measurements [6]. 

Furthermore, the Kaiman gain matrix is determined from the relation 

K = PH^R-1 (3.27) 

where P is the covariance prediction, H relates the state to the measurement, and R is 

the measurement covariance noise matrix. Therefore, we can deduce that K is expressible 

as 

K ex | (3.28) 

where Q and R refer to system and observation noises, respectively [9]. Equation (3.28) 

is interpreted as an increase in filter bandwidth as the Kaiman weight K increases. Using 

the proportionality (3.28), we will tune the system states that use virtual measurements. 

For example, the Kaiman gain will be the greatest for the position estimates because 

they contain the most uncertainty. 
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CHAPTER 4 

RESEARCH METHODOLOGY 

4.1    Hardware and Software 

The HMV system design procedure consists of developing the system hardware, data 

acquisition, and postprocessing. The objective of the HMV system hardware design is 

to reduce the space and weight of the system package without sacrificing sensor infor- 

mation. Another hardware design consideration is the constraint associated with limited 

flight-environment energy resources. Furthermore, sensor measurements should be im- 

mediately available when the system is turned on. The final consideration is that the 

sensor electronics should provide enough resolution to preserve the low-frequency spectral 

content that is characteristic of head motion. 

4.1.1    The accelerometer 

An accelerometer outputs a voltage that is proportional to the amount of force that 

is acting upon the axis of sensitivity of the sensor. The sensors in the head-motion 

system are configured mutually orthogonal to detect linear motion in the XYZ plane. 

Considering a neutrally oriented head, the x direction extends from the nose outward and 

is perpendicular to the force of gravity. The y direction passes through the ear canal, and 

the z axis parallels the force of gravity. This relationship provides a basis for referencing 

the information that is received from the states of the system; however, this accelerometer 

configuration cannot detect the angle of rotation that the head experiences. 

The primary consideration for designing the head-motion circuit is in building the 

system so that the zero-g bias level and output scale factor of the accelerometers accu- 

rately depict the system dynamics. The accelerometers used for this head-motion system 
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R2^ 

Figure 4.1 Accelerometer Circuit Schematic 

are supplied by Analog Devices, and the sensor model type is the ADXL05. The ADXL05 

is a 10-pin device that will measure accelerations with full-scale ranges of ±5g or less. 

The noise floor is 500 ßg/VWz. Each accelerometer circuit uses three external capacitors 

and shares a +5 volt-regulated power supply. The prototype design for the head-motion 

system can measure up to ±5g accelerations. Also, each circuit uses three resistors to 

configure the output buffer amplifier, which determines the scale factor of the accelerom- 

eter output asf. The ADXL05 does not need any external signal conditioning to interface 

to the data acquisition system. 

When the ADXL05 is oriented to the earth's gravity (and held in place), the ADXL05 

will experience an acceleration of +1 g. This corresponds to a change of approximately 

+ 200 mV at the Vpr output pin. Because this is a bipolar device, the output would read 

negative if the polarity were reversed because of the inverting configuration of the buffer 

amplifier output Vout. Figure 4.1 is the schematic for one accelerometer. Using Figure 

4.1, the overall transfer function is 

Vout = §(1.8V 
Hi 

Vpr) + §1.8V + 1.8V (4.1) 

The nominal values for the components used in Figure 4.1 are given in Table 4.1. By using 
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Table 4.1 Nominal Component Values 

Resistor KÜ Capacitor IMF 

Ri 51 Cx .022 

R2 270 c2 .022 

R3 100 Cz .1 

the component values in Table 4.1, the accelerometer output scale factor asf = 400m V/p. 

Also, the zero-g bias is Vzg « 2.5V, 

Vectors in three dimensions may be used to analyze the forces that act upon the 

accelerometer. The ADXL05 is a sensor designed to measure accelerations that result 

from an applied force. It responds to the component of acceleration on its sensitive pr- 

axis. The sensitive £-axis is defined by a line drawn between the package tab and Pin 

5 in the plane of the pin circle. Furthermore, the transverse z-axis and y-axis are used 

to develop the vector relationship of the forces acting upon the sensor package. The 

transverse y-axis is the axis perpendicular (90°) to the package axis of sensitivity, and 

the transverse z-axis is perpendicular to both the package axis and the plane of the pin 

circle. Figure 4.2 describes a three-dimensional acceleration vector AXYZ acting upon 

the sensor, where Ax is the component of interest. To determine Ax, it is necessary to 

find the component of acceleration in the XY plane (AXY) using the cosine law 

AXY   =   AXYz(cos0XY) 

Ax   =   AXY(cos9x) 

(4.2) 

(4.3) 

Therefore, nominal 

Vpr = 200mV/g(AXYz)(cos9XY)cos9x (4.4) 

Ideally, the sensor will react to forces along or at angles to its sensitive axis, but 

will reject signals from its various transverse axes. Moreover, even an ideal sensor will 

produce output signals if the transverse signals are not exactly 90° from the sensitive 

X-axis. When an acceleration acts on the sensor from a direction different from the 

sensitive axis, it will show up at the ADXL05 output at a reduced amplitude. Table 4.2 
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Figure 4.3 Two Possible Tilt Orientations 

lists the ideal accelerometer output for forces acting upon various angles of the ADXL05. 

Furthermore, another advantage of using the ADXL05 is that it provides tilt mea- 

surements. Tilt measurements use the earth's gravity as a constant reference force to 

determine inclination. This is important to the development of the head-motion system, 

because it helps determine the error in the accelerometer alignment. The following equa- 

tion uses the sine function to describe a tilt occurring at an angle 9t by using gravity as 
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Table 4.2 Ideal Output for Off-Axis Accelerations 

0X 
% Signal at Output g Output for 5# Acceleration 

0° 100 5.000 
1° 99.98 4.999 
2° 99.94 4.997 
3° 99.86 4.993 
5° 99.62 4.981 

10° 98.48 4.924 
30° 86.60 4.330 
45° 70.71 3.536 
60° 50.00 2.500 
80° 17.36 0.868 
85° 8.72 0.436 
87° 5.25 0.263 
88° 3.49 0.175 
89° 1.7 0.085 
90° 0 0.000 

a constant reference force: 

Vout = [asf x sin(9t) x lg] + Vzg (4.5) 

for accelerometers oriented as in Figure 4.3, where g = 9.807m/s2, asf = 400mV/g is the 

accelerometer scale factor, and Vzg is the zero-g offset of the accelerometer. 

For a given acceleration signal, and assuming no other changes in the axis or in- 

terfering signals, the tilt angle is proportional to the voltage output and is determined 

using 
i/   . _ i/ 

(4.6) n ■    11 ' out        *zg \ 9t = arcsin(lg x  ) 
a sf 

By using Equation (4.6), each accelerometer tilt error was calculated. It was determined 

that the largest accelerometer tilt was « 7°. Uncertainty in the zero-g offset and ac- 

celerometer scale factor may contribute to the tilt error, so we rely upon the convergence 

properties of the Kaiman filter to account for tilt error. 
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4.1.2 Data acquisition 

The data acquistion board, model PC-LPM-16, was developed by National Instru- 

muents and connects into the parallel port of a personal computer (PC) . The PC-LPM-16 

board contains a 12-bit ADC with sixteen analog inputs and a programmable sampling 

rate up to 50 KHz. This sampling bandwidth well exceeds the Nyquist criteria, which 

allows high resolution data logging to postprocess the low-frequency, head-motion signals. 

4.1.3 Software 

The driver software (NI-DAQ) used to control the data acquisition board was also 

developed by National Instruments. Fortunately, this software was included with the 

PC-LPM-16 because purchasing application-specific software is extremely expensive, and 

developing it is time consuming. 

The NI-DAQ driver software has a library of functions that may be called from the 

application programming environment. These functions were used to control the A/D 

sampling rate and the number of samples per channel collected. The ability to preset the 

number of samples to data-log is an effective way to conserve PC memory. 

4.2    Test Procedures 

Before any testing was done, the bias points of the system accelerometers were 

recorded. This was accomplished by using the constant force of gravity as a reference. 

The remaining steps in the testing procedure were to conduct the experiments and process 

the data. 

4.2.1    Experimentation 

Several experiments were conducted to test the effectiveness of the Kaiman filter 

when applied to the data obtained from the head-motion system. Although no animals 

were used throughout any of the experiments, each test provided important information 

regarding the robustness of the Kaiman filter to changes within the system inertial dy- 

namics. These experiments were conducted under controlled conditions and fell into two 
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categories: motionless and dynamic experiments. Motionless experiments were designed 

to test the convergence of the Kaiman filter states and were conducted on a platform. 

The dynamic experiments were conducted after measuring several trajectories before 

acquiring data. The dynamics tests were used to analyze the accuracy of the system. 

Furthermore, the total sampling rate used to collect the data from the three input chan- 

nels was 200 Hz. Each of the experiments was videotaped to provide additional system 

analysis information during postprocessing. 

4.2.2    Postprocessing 

All of the experimental data is postprocessed using MATLAB. MATLAB proved to 

be an invaluable analysis tool for the development of the head-motion system. Using the 

system model developed in Chapter 3, MATLAB was used to process the test data by 

implenting the Kaiman filter Equations ((2.16)-(2.23)). The initial postprocessing of the 

accelerometer data revealed that the head-motion system was extremely noisy. Figure 

4.4 is a plot of the motionless accelerometer data and suggests high-frequency noise in 

the signal. Hence, the corruption of the accelerometer data suggests using a low-pass 

filter before implementing the Kaiman filter. The Parks-McClellan algorithm was used 

to design a low-pass filter for the noisy accelerometer data. Figure 4.5 is the result of 

using a low-pass filter of length 51 on Figure 4.4. Further analysis will demonstrate that 

passing the data through a low-pass filter before implementing a Kaiman filter creates 

several system advantages. The following prefiltering advantages will be shown: 

1. An estimate of the accelerometer variances are more readily determined by exam- 

ining the filtered data. 

2. The Kaiman filter covariance propagation smoothly converges to the state esti- 

mates. 

3. A reduction in the mathematical model of the system is achieved, because the state 

used to determine the acceleration vector is the direct output of the filter. 

4. It allows the Kaiman filter covariance parameters to focus upon the deterministic 

errors of the system: tilt, misalignment, zero-g bias, and drifting. 

28 



Figure 4.4 Unfiltered Y-channel Data 
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Figure 4.5 Filtered Y-channel Data 
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4.3    Results 

When the accelerometer data are processed with the Kaiman filter, the resulting 

outputs are three state vectors: acceleration, position, and velocity. To evaluate the 

performance of the Kaiman filter upon each test trajectory, we will analyze three different 

scenarios using the same filter parameters. 

• Case 1: The first case will demonstrate the effect of processing a test trajectory 

after bandlimiting the signal input with a low-pass filter. Although the Kaiman 

filter will not be used in this case, the state-transition matrix $ will be used to 

process the system from one state to another. 

• Case 2: The second case will examine the effect of processing the same test trajec- 

tory data by passing the information directly through the Kaiman filter without 

any prefiltering. This case relies strictly upon the convergence properties of the 

Kaiman filter to obtain the true states of the system. 

• Case 3: Essentially, this is a combination of Case 1 and Case 2. The third case 

analyzes the effect of prefiltering the data before passing the samples through a 

Kaiman filter. It is important to note that a reduction in the system model results 

because the low-pass filter directly outputs acceleration. Consequently, the Kaiman 

filter uses this filtered acceleration output to determine the velocity and position 

of the test trajectory. 

4.3.1    Test trajectories 

Convergence plays a critical role in the development of the Kaiman filter [10]. Previ- 

ously, we noted that the motionless trajectories were designed to test the Kaiman filter 

for convergence. The motionless experiment was conducted on a still platform, and the 

sensors were free from any external forces. The dynamic experiment consisted of using 

a hand to generate some data. The hand was constrained to stay within a 10 cm radius 

and only allowed to move parallel to the force of gravity. 

Figure 4.6 represents the X-accelerometer measurement for the raw data (top) and 

low-pass filter (bottom) for the motionless test. 
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Figure 4.6 Motionless X-accelerometer input 
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Figure 4.7 X: Unfiltered state-estimate for Case 1 
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Figure 4.8 X: Velocity estimates 
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Figure 4.9 X: Positon estimates 
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4.3.2    System performance 

We will examine the convergence properties of this system to rate the system per- 

formance. First, the unfiltered velocity and position estimates are displayed in Figure 

4.7, Case 1. It is quickly observed that the states of this case diverge. This divergence 

is expected because the system has no means of compensating for model errors. Next, 

the velocity and position estimates for Cases 2 and 3 are displayed in Figures 4.8 and 

4.9, respectively. The velocity and position estimates both converge. Furthermore, these 

two cases provide vital information regarding the system dynamics and are worth further 

analysis. Figure 4.8 shows that the velocity estimate converges when using the Kaiman 

filter; however, the transition is not smooth. Moreover, the position-estimate transition 

region slope is steep. Recall that Case 3 is the result of both prefiltering and Kaiman 

filtering. This filtering results in a smooth transition region which is shown in Figure 4.9. 

The following results are based upon the previously described oscillating hand. Since 

the majority of motion is in the z direction, the Z-channel accelerometer will vary the 

most. Figure 4.10 represents the Z-accelerometer measurement for the raw data. The 

unfiltered position estimate for the Z-accelerometer is shown in Figure 4.11. Notice the 

inaccuracy in the unfiltered position estimate. Next, Figure 4.12 shows the velocity 

estimates of the oscillating hand. These estimates are approximately the same; however, 

Case 3 tends to have a smoother transition than Case 2. The position estimates given 

in Figure 4.13 are approximately identical for Cases 2 and 3. Observe that a time delay 

results whenever the data are prefiltered. 

The next trajectory, Figure 4.14, represents the dynamic Y-accelerometer raw data 

input. Figure 4.15, shows divergence of the system states. Furthermore, Figure 4.16 

depicts the estimated y velocity of the oscillating hand. Although the velocity estimation 

varies, the average velocity is approximately zero. When the oscillating hand tilts, the 

result is a drift in the velocity estimate. Moreover, when a prefilter and a Kaiman Filter 

are used, the result is a smooth state estimate. Finally, the position estimates shown in 

Figure 4.17 are similar with the exception of a time delay. 
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Figure 4.10 Filtered dynamic Z-accelerometer input 
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Figure 4.11 Z: Unfiltered position-estimate comparison 
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Figure 4.14 Filtered dynamic Y-accelerometer input 
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Figure 4.15 Y: Unfiltered state-estimate comparison 
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Figure 4.16 Y: Velocity estimates 
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CHAPTER 5 

CONCLUSIONS 

This thesis has introduced three analysis tools to enhance the quality of information 

obtained by processing data received from an animal head-motion estimation system. 

First, we developed a Kaiman filter mathematical model for linear head motion. Next, 

we improved upon this model by introducing virtual measurements. Finally, it was shown 

that preceding the Kaiman filter with a low-pass filter significantly improves the state 

estimates for the head-motion estimation system. 

The second analysis tool that we have developed is a virtual measurement. These 

measurement approximations were used in the absence of real state measurements to fit 

into the mathematical model of the Kaiman filter. This technique uses the Kaiman filter 

covariance matrices to constrain the uncertainty within the virtual measurement. 

The final analysis tool, prefiltering, presents several advantages to improve state esti- 

mation for the head-motion system. These prefiltering advantages include the following: 

a more readily available initialization of the Kaiman filter covariance matrices, atten- 

uating high-frequency noise, and smoothing state-estimate transitions. Consequently, 

future research should analyze the effect of prefiltering sensor data, including the study 

of the effects of any exponentially correlated noise introduced into the system and how it 

might affect real-time implementation of this system. Initial analysis suggests that the 

advantages obtained by prefiltering the data outweigh the disadvantages. 

Moreover, further study should develop self-tuning algorithms for head-motion esti- 

mation. This will improve the robustness of the system and create adaptability to new 

applications. Future directions for designing head-motion systems should investigate new 

accelerometer configurations that provide more useful information than an orthogonal 

configuration. 
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